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Abstract 

This analysis pertains to the applicability of optima! 
sensitivity jnfcymatipn aerospace vehicle design. An op 
timal sensitivity (OF post-optimality) analysis refers to c o a ~ ~  
putations perfprmd once the initial optimization prQblen\ 
is solved. m~se cqmpuwons may be used to characpriza 
the design space abaut tpe present solution and infer cbang. 
es in this solutjon as a result of constraint or parameter vari- 
ations, witbout re.optinaizing the entire system. The present 
analysis demopsws that post-optimality infonnatioq gen- 
erated throua fipt-prdqr computations can be used to ac- 
curately predict tbq effect of constraint and parapeter 
perturbations pn the optimal solution. This assessment is 
based on tbq qolutipq of gn airqaft design problem in which 
the post-opWity g s W t e s  are shown to be within a few 
percent of tbe true e04utton over the practical range of con- 
straint andpimmewr variations. Through solution of a reus- 
able, single-s@ge-w+rkit, launch vehicle design problem, 
this optimal sqvsitivi{y information is also shown to imprave 
the efficiency of @q Qesign process, For a hierarc4ically 
decomposal problepn, this computational efficiency is real- 
ized by estiwtina @e main-problem objective gradient 
through optimal sep&ivity calculations, By reducine, 
need for fiqite @ffemntit$ion of a re-optimized subprobieql, 
a significant decrew in the number of objective funptiQn 
evaluations requited tp rewh the optimal solution is obtaiwd. 

lyqmenclat urcs 

A 

C 

*Aerospace Engiwer, Spqce Systems Divisipn, Member AIM. 
**Associate Professsoy, Asronautics & Astronautics, Member 
A M .  
***Research Assistat& Aeronautics & Astronautics, Studetu 
Member AIM, 
Copyright81~2AmerioanFstituteofAer~nautics and Astronaptie. 
Inc. Nocopfightissssate$intheUnitedStatesunderTitle 17,U.S. 
Code. The US. Qovemeqt has aroyalty-free license to exercise all 
rights under Wwpyxightclalmed herein for Governmental purposes. 
All other rights w tqscrved by the copyright owner. 

active cpnstraint Jacobian, dimension m x n 

wtive ppnspaint vector, dimension m 
AR aspect ratlo 

\ 

CL 
CONSlz 
DOC 
r)oF 
P 
8 
mdow 
b 
Lac 
m 
MR 
n 
MPSOL 

P 
PASS 
POST 
Sref 
SSTO 
VP 
TW 

bC 
A 

supcscript 

subscript 

x 

Ir 

C 

rrurface lift coefRcisnt (wing or tail) 
Conflgmtion Slzlnu program 
QsFect operat@g COO!, cents/seat-m\le 
dqm-of-mm 
objective function 
objective grqliqnt vwtor, dimension n 
p s s  liftoff weight 
number of parameters 
Langley Research Center 
number of active cmstraints 
SlrrSS-ratiO 
numbr of design qriables 
Nodlaear PrQgrguqming, Stanford 
Optimization Labamtory 
parametar vector, dimension k 
Prcrgm for hircqft Synthesis Studies 
P r o & m  to O p h l z e  Simulated Trpjectoriet 
mferpnce aerodynmc surface area, ftz 
dngle-stage-tp.wbit launch vehlclg 

tbrust.ta7weigbt mia  
&sign variable yeqtar, dimension q 
eonstpdnt value perturbation 
Lagrange qlvltiplier vector, dimension m 

WheSs-tO-cbQt~ 

evaluabd at tbe optimum solution 

Introduction and Bqckground 

Aerospace vebicle design i s  81) iterative process wbiop 
require8 the integmtion of nwwrqps disciplinar). analysqs 
(e.&, aetodynatpics, strucfwes, pmpulsion, perfqance, aq6 
cost). Often, tba time requbd ta ~ t - u p  the desigp probleq, 
model tbe disc@liwy inwmtionti, and obtain an opthnup 
salytioq is significw, Therefop, once a solution Is reacbeg, 
it i s  imperative to extract @ much design iqfoqpation 



possible. In addition to design variable information pertain- 
ing to the optimum, it is possible to obtain a description of 
the design space about the optimal configuration through a 
post-optimality (or sensitivity) analysis. In particular, an 
optimal sensitivity analysis may be used to infer the change 
in the present optimal design with respect to a small change 
in a constraint or a previously fixed parameter. This infor- 
mation which is generally available without having to re- 
optimize the entire system may also be advantageously used 
in the solution of a decomposed optimization problem. The 
present investigation focuses on the application of optimal 
sensitivity analyses to aerospace vehicle design. 

Sensitivities are typically used in design of complex 
systems to compute the change in the set of output variables 
(including the constraints and objective function) to a small 
change in a given design variable (while holding the other 
design variables frxed).ls2 When coupled with an optimiza- 
tion scheme, the sensitivity information is used to move the 
design variables in the direction of the optimal solution. 
Additionally, the sensitivity calculations may be used to 
extract information regarding the disciplinary couplings 
within a complex system. Because this application of sensi- 
tivities is used to improve a design configuration, this ap- 
proach may be referred to as a design sensitivity analysis. 
For example, in aircraft design, design sensitivity informa- 
tion can be used anywhere in the design space to infer how a 
change in the wing aspect ratio, sweep, or twist affects the 
aircraft’s overall weight, or direct operating cost (DOC) 
without violating a range coristraint. Additionally, through 
a design sensitivity analysis, the coupling between structures 
and aerodynamics or weights and performance can be as- 
sessed. 

In a preliminary design environment, the solution of a 
single optimization problem is seldom satisfactory. In addi- 
tion to the present solution, the impact of design changes on 
the optimal configuration is of significant interest. Fortu- 
nately, this information is generally available without hav- 
ing to re-optimize the entire ~ y s t e m . ~ - l l  The use of 
sensitivities in this fashion (where the relationships involve 
optimal variables) may be termed an optimal sensitivity anal- 
ysis. In terms of the aircraft design problem discussed pre- 
viously, utilizing sensitivity information at an optimal design 
point, one can infer how a small change in the range con- 
straint would change the optimum DOC and optimum de- 
sign variables (wing aspect ratio, sweep, and twist). 

An optimal sensitivity (or post-optimality) analysis can 
take on many forms, each providing a different level of in- 

formation concerning changes in the optimal solution. The 
simplest form of post-optimality analysis requires only an 
accurate prediction of the Lagrange multipliers at the solu- 
tion. These multipliers may be used to infer changes in the 
optimum solution with respect to small changes in an active 
constraint and are generally provided upon solution to an 
optimization problem with little or no additional computa- 
tional requirements. For a small increase in computational 
effort, the change in the optimum solution with respect to a 
change in a previously fixed parameter may be attained. This 
is the level to which post-optimality information is used in 
the present investigation; however, with more numerical 
effort, the altered set of optimum design variables may also 
be obtained with respect to a small change in either an ac- 
tive constraint or previously fixed parameter. 

The present study begins with a brief discussion of the 
first-order computational approach used to compute the op- 
timal sensitivity information. The validity of these estimates 
is then discussed through solution of two optimization prob- 
lems: (1) Rosenbrock’s valley function and (2) the design of 
a commercial transport aircraft. Through these applications, 
the utility and limitations of post-optimality information is 
demonstrated. Of specific interest, is the determination of 
whether typical aerospace design constraints and parame- 
ters are well-suited to a first-order post-optimality analysis. 
Comparisons between the optimal sensitivity predictions and 
re-optimization are also presented. With the validity of these 
post-optimality estimates established, the sensitivity infor- 
mation is used to improve the efficiency of the design pro- 
cess without loss of accuracy. In particular, the computational 
advantage of using optimal sensitivity information in a hier- 
archically-decomposed, single-stage-to-orbit (SSTO), launch 
vehicle design problem is demonstrated. 

Analysis 

Methodology 

There are several available methods for computing op- 
timal sensitivity information. These techniques are summa- 
rized in References 3,5 , 8  and 9. In general terms, a nonlinear 
programming problem may be mathematically expressed in 
terms of the design variables (xi), problem constraints (ci), 
and an objective function (F) as 

minimize F, where 
subject to 

F = F(xl,x2 ,..... xn) 
ci = q(x1,x2, ..... xn), i = 1, m 
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This problem will also be characterized by a number of 
parameters (pj, j=l,k) which remain fixed during the opti- 
mization procedufe. For an aircraft, these parameters may 
include the cruise Mach number, the maximum cruise range, 
or the number of passengers. For a launch vehicle such pa- 
rameters could include engine propulsion characteristics, 
payload, weight margin. of tankage weight fractions. Once 
the opWi t ion  problem is solved, the change in the opti- 
mal objective function. with respect to any fmed parameter 
may be calculated by 

Here X* represents the Lagrange multiplier vector at the 
solution. Note that if the parameter of interest is an active 
constraint bound, this equation reduces to 

dF* - = A* 
dc 

Most optimization algorithms provide an estimate of A* 
at the solution. However, in finite precision, differences 
among the various techniques may be significant. At the 
solution of the problem, the necessary and sufficient condi- 
tions of optimality yield 

ATh*=g (3) 

The solution to eq. (3) may be obtained by solving the equiv- 
alent linear system 

(AAT) h* = Ag (4) 

however, such a solution is subject to potential conditioning 
problems as the condition number of AAT is the square of 
the condition number of A. In finite precision, a more accu- 
rate technique for obtaining h* is by forming either a TQ 
factorization4 or a QR decornp~s i t ion~~~~ of A. 

Limitations and Operational Cost 

With the above analysis, the change in optimal solution 
with respect to a change in a given constraint or design pa- 
rameter may be estimated. However, because this estimate 
is only valid in a region about the optimum where changes 
are occurring linearly, we may be limited to small perturba- 
tions in the parameters. Additionally, the active set of con- 
straints must not be altered by the perturbation. To illustrate 
the potential problems induced by an active set change, con- 

sider the simple case of a single active constraint which is 
initially close to the minimum unconstrained solution. If this 
constraint is perturbed past the unconstrained optimum (mak- 
ing the constraint inactive), it is clear that the optimal objec- 
tive function would be the global minimum. However, the 
sensitivity estimate (having no means to compute the un- 
constrained minimum) would predict a linear variation in 
the objective function continuing to values well below the 
global minimum. 

Other considerations which effect the valid extrapola- 
tion range of the sensitivity estimates include problem scal- 
ing and convergence tolerance. For a problem with numerous 
active constraints or numerous parameters of interest, scal- 
ing is always a general optimization concern. In particular, 
Refs. 7 and 11 demonstrate that the Lagrange multiplier es- 
timates calculated in the scaled space and then transformed 
back to the unscaled design space are generally more accu- 
rate than h* estimates computed directly in the unscaled 
space. Additionally, although many optimizers provide an 
estimate of h* as part of the termination process, accurate 
estimates are only ensured when the problem has converged 
tightly. 

For an optimization routine that does not already pro- 
vide an estimate of h*, the operational cost of adding such 
an analysis is quite small relative to the cost of the optimiza- 
tion itself. In fact, at the solution, a general quadratic opti- 
mization routine may already provide an estimate of g and 
have performed the required factorization of A. If a TQ fac- 
torization of A has been performed, the additional computa- 
tions needed to produce h* require on the order of (nm + m2) 
operations. Note that this process does not require any addi- 
tional function of gradient evaluations. With accurate esti- 
mates'of h*, the change in optimal objective function with 
respect to a constraint variation is known. However, to ob- 
tain a prediction of the change in optimal objective function 
with respect to a parameter variation, one or two extra func- 
tion evaluations (depending on the choice of finite-differ- 
encbg approximation) are required to solve eq. (1) for each 
parameter of interest. 

Results and Discussion 

Rosenbrock's Valley Function 

Since the optimal sensitivity predictions are in effect a 
first-order approximation, this information is only expected 
to be valid in a small region about the optimum. The size of 
this region is dependent on the linearity of the design space 
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in the direction orthogonal to the constraint. To illustrate 
this regional dependence, minimization of Rosenbrock's two- 
variable valley function was performed with a single linear 
constraint. Rosenbrock's valley function is 

F ( x ~ , x ~ )  = lOO.O(x2 - ~ 1 ~ ) ~  + (1.0 - (5 )  

This design space is displayed in Fig. 1, where the 
contours shown represent constant values of the objective 
function. As shown in this figure, application of the optimal 
sensitivity estimates is performed in both a linear and non- 
linear region of the design space. The optimal sensitivity 
value was computed and compared with the actual change 
in optimal objective function (F*) obtained through re- 
optimization. Optimization was performed with the sequen- 
tial quadratic programming algorithm, NPSOL, which uses 
a quasi-Newton method to approximate the Hessian1* At 
the solution, NPSOL provides an estimate of h* (obtained 
through a TQ factorization of A in the scaled design space). 
To eliminate finite difference effects, the objective-gradi- 
ent, Jacobian, and Hessian were computed analytically for 
this sample problem. 

1.5 

1 .o 

x2 .5 

0 

-.5 

the sensitivity prediction is highly inaccurate and its applica- 
tion leads to an erroneous result. On the other hand. fur the de- 
sign region and consha.int of Fig. 3, the sensitivity prediction 
agrees quite well over most of the design space. Note that in 
this case the unconstrainedminimum is reached fora& of 0.173 
p = 0). With a larger variation in the value of the constraint, 
the optimal sensitivity estimate continues to predict a decrease 
in the objective function when in fact one cannot occut. This 
illustrates the change in active-set problem discussed earlier. 
?be good agreement between the sensitivity prediction and ac- 
tual change inF* shown in Fig. 3 is aresult of the linearity of 
this region of the design space in the direction of the constraint 
variation. Hence, botb the topography of the design space and 
direction of the constraint are significant in determining the va- 
lidity of the optimal sensitivity prediction. 

1 .oo I- - Exact sdution 
--- Optimal sensitivity prediction 

o Optimum with present set 
of parameters 

F' 
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Fig. 2 Extrapolation and validity of optimal sensitivity 
prediction in nonlinear region of the design space. 
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Fig. 1 Rosenbrock's valley jbnction. Fig. 3 Extrapolation and validity of optimal sensitivity 
prediction in linear region of the design space. 

Comparison between the sensitivity estimate and the actu- 
al change in optimal solution were made for various changes in 
the constmint and are illustrated in Figs. 2 and 3. As shown in 
Fig. 2, for extrenely small changes m the cOnStraint ova a highly 
nonlinear region of the design space, the sensitivity prediction 
agrees well with the actual change. However, for perturbatons 
in the constraint value (Ac) greater than approximately 5% the 
linearapp.oximatonbeginstobreakdown.F~largerchanges, 

Optimal Sensitivity Analysis in Aircraft Design 

To illustrate the applicability of optimal sensitivity anal- 
ysis to a more complex, aerospace design problem, a DC-9 
class, commercial transport aircraft was analyzed with the 
use of the PASS system.13-16 PASS is a quasi-procedural 
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aircraft design system consisting of numerous disciplinary 
analysis and optimization routines. The aircraft design prob- 
lem is posed with twelve design variables, and nine con- 
straints. As listed in Table 1, the constraints include limits 
on static stability, landing and takeoff field lengths, cruise 
range and thrust, and climb-gradient in the event of an en- 
gine failure. Design variables include the initial and final 
mise altitude, the wing and horizontal-tail geometrical prop- 
erties, the uninscalled engine thrust level, and the flap set- 
ting at takeoff. Note that two additional constraints and 
design variables are included to satisfy compatibility require- 
ments between the analysis routines, thereby eliminating an 
iteration l00p.l~ Use of compatibility constraints is discussed 
in the next section of this paper. The analysis routines used 
to solve this problem are based on those used in Ref. 13 
with some modification. N P S O L ~ ~  was utilized to minimize 
direct operating cost. 

Table 1. Aircraft design problem: DC-9 ckss, 
commercial transport. 

Objective function .I direct operating cost 

Constraints 

Name Min. Max. 
1. Static maan ................................................. 0.2 
2. Cruise range, Nm ......................................... 850.0 
3. (Draghrust) at cruise .................................... 0.3 
4. Second-segnent climb gradient ................... 0.024 
5. CL of vertical tail with engine OLt ................... 4.8 

1 .o 
960.0 
0.88 

0.030 
0.8 

7500.0 
6000.0 
2.39 
0.8 

6. Takeoff field length, ft .................................. 5000.0 

7. Landing fekl length, ft ................................. 2ooO.o 

9. CL of horizontal tail at takeoff ......................... 0.0 

8. CL of wing at takeoff ...................................... 0.0 

Design Variables 

Name Min. Initial Value Max. 
1. Initial cruise altitude, ft ............... 10 ooO.0 

2. Final cruise altitude, ft ............... 10 000.0 

4. AR, wing. ........................................ 5.0 
5. Sweep wing, deg... ......................... 0.0 

8. tk, wing ......................................... 0.08 
7. Wing longitudinal position .............. 0.3 
8. S,f, horizontal tail ........................ 75.0 
9. AR, horizontal ................................ 3.0 

3. S,f, wing, # ............................... 500.0 

10. Engine static thrust level, Ib ....... 10 oOO.0 

11. Maximum zero fuel weight, Ib .... 30 000.0 

12. Takeoff flap setting, deg ................. 0.0 

31 000.0 
31 000.0 
1000.7 

8.7 
24.5 

0.1123 
0.35 

250.18 
4.928 

14000.0 
87 650.0 

5.0 

50 000.0 
50 000.0 
1500.0 
12.0 
50.0 

0.16 
0.45 
450.0 
10.0 

20 000.0 
9000.0 

50.0 

From the starting point listed in Table 1,27 major iter- 
ations or 610 objective function evaluations were required 
for NPSOL to converge to the optimum solution. The val- 
ues of the optimum design variables and objective function 
are presented in Figure 4 along with a vehicle schematic. As 
part of the PASS analysis, the scaled Lagrange multiplier 
estimates (calculated at the solution for each active constraint 
by NPSOL) are transformed to the unscaled design space. 
These unscaled multiplier estimates are listed in Table 2 
along with the value of each active constraint at the solu- 
tion. At the solution there are six active constraints, not in- 
cluding the two compatibility relations. The final column in 
Table 2 presents ch*, the value of the constraint at the opti- 
mum times the corresponding Lagrange multiplier estimate. 
This value may be used as a guideline in comparing the ef- 
fect of constraint variations of different units. Comparing 
the ch* values listed in Table 2, it is clear that a small in- 

Initial mise altitude, It ............ .29540 
Final cnrise altitude, 11 ............ .39060 
Wing Sref, 11 ..................... 986.0 
WingAR.R2 ...................... 10.2 
Wing sweep, deg .................. 39.5 
Wing Vc 0.155 
Wing longitudinal position 0.323 
Horizontal tau Srel, 12. .............. .245 
Horizontal tail AR. ................. .4.70 
Engine static thrust, Ib ............. 13780 
Max. zero fuel weight, Ib ........... 80640 
Takeoil flap delfledion. deg .......... .7.35 

Direct operating cost, centdseat-mile . .4.459 

Required function evals ............. 610 

........................ 
.......... 

Fig. 4 Optimal solution of commercial transport aircraft 
design problem. 

Table 2. Aircraft design problem: active constraints and 
Lagrange multiplier estimates. 

Active Constraints 
Static margin 
Cruise range, Nm 
(Dra@hrust) at cruise 
Second-segment climb gradient 
CL of wing at takeoff 
Takeoff field length, ft 

ca* 
0.0234 

-0.9360 
-0.0274 
0.1703 
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crease in cruise range is most beneficial toward minimizing 
DOC*. A small increase in takeoff field length is next in 
significance followed by either a decrease in the second- 
segment c r i b  requirement or an increase in the allowable 
wing lift-coefficient at takeoff. 

4.55 

4.50 

Doc', 
centrlceat-mile 

4.45 

Comparisons between the optimal sensitivity prediction 
and the actual change in optimal solution were made for 
various changes in ea& active constraint. These compari- 
sons are illustrated in Figures 5-9. As is clear from each fig- 
ure, the optimal sensitivity estimate is nearly exact in the 
limit of an infinitesimal variation of each constraint value. 
Surprisingly, the estimates hold up rather well over a rela- 
tively large range of constraint values. For example, as de- 
picted in Fig. 5. for cruise range constraint variations on the 
order of 100 nm, the optimal sensitivity estimate provides a 
good prediction of the change in DOC* (to within 1.5%). 
Clearly, if the cruise range is perturbed 500 to lo00 nm, the 
Optimal sensitivity prediction becomes invalid. This results 
from both the nonlinearity of the design space and changes 

- 
- Exact wlutbn --- Optimal semlh4ty predictbn 

o Optimum wlh present set 
- 

of parameters 

- 

/-- 
0- 

4.40/0- I I I I 

5.2 - Exact calutbn --- Optimal mrpHh4ty prediction 
0 timumwlhprewntd 

?parameters 

4.2 4.41 

4.0 1 
3.0 u 

500 1wo 15M) 2MH) 
Grub range constrainl. nmi. 

Fig. 5 Comparison of optimal sensitivity prediction for 
cruise range constant variations. 

- Exact dutbn --- Optimal uncitMy prediction 
4.7 timum with present set 

4.0 r 

4.7 - 

4.6 - of parameters 

4.5 

4.4 - 

- Exad CdlRlOn --- o p t h i  SenSilMty predMion 
0 Optimum wkh prewnl set 

Doc' 
cwlwsea<mik - 

0 .005 .010 .015 .Om .025 .030 .035 .040 .045 .050 
Secondwmerd climb gradbnl conctrainl 

Fig. 7 Comparison of optimal sensitivity prediction for 
second-segment climb gradient constraint variations. 

4.9 
infeasible 

- Ex.ct  won --- Optimal ~nslt ivlty predidbn 
o Optimum wlth p r d  u t  

of parameters 
DOC', 

centdseat-mile 
4.6 

Fig. 8 Comparison of optimal sensitivity prediction for 
ratio constraint Variations. 

in the active set of constraints. For instance, beyond a con- 
sfraint value of 1951 nm, the cruise range constraint becomes 
inactive and further increases in this variable do not result 
in a lower DOC*, as predicted. However, for constraint per- 
turbations of this magnitude, we are really dealing witb a 
different design problem rather than a perturbation of the 
original problem; hence, one would not expect these esti- 
mates to be valid. 

Fig. 6 Comparison of optimal sensitivity prediction for 
takeofffield length constraint variations. 
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Figures 6 and 7 depict analogous comparisons in regard 
to takeoff field length and second-segment climb gradient 
constraint perturbations. These figures show rhat through- 
out the entire practical range of interest, the linear sensitiv- 
ity estimates predict the change in DOC* quite well (within 
1% for second-segment climb gradient variations and with- 
in 3% for takeoff field length perturbations). Surprisingly, 
these post-optimalie predictions are still found to be accu- 
rate after a change in the active set of constraints. 

Predicted DOC: 
centsheat-mile 

4.9080 
4.8105 
4.7129 
4.5667 
4.5179 
4.4935 
4.4692 
4.4643 

4.4545 
4.4496 
4.4204 
4.3232 
4.1766 
3.9330 
3.4451 

- 

Figures 8 and 9 show the change in optimum DOC with 
respect to changes in the mise drag-to-thrust ratio and stat- 
ic margin constraints. Once again, note that in the vicinity 
of the present solution (static margin range of 0.1- 0.3 and 
cruise drag-to-thrust ratio from 0.7 to l.O), the agreement is 
quite good (within 1%). However, these figures also show 
the potential danger of extrapolating beyond the prediction’s 
linear region of validity. For the case of cruise drag-to-thrust 
ratio (Fig. 8), the optimal sensitivity estimate indicates a 
marginal increase in DOC* as this constraint is relaxed be- 
low 0.6 when in fact such a decrease results in an infeasible 
design. Note that the modest slope of the optimal sensitivity 
prediction shown in Fig. 8 should be expected from the small 
relative magnitude of the ch* value listed in Table 2. Figure 
9 shows that as the configuration becomes more unstable, 
the static margin constraint eventually becomes inactive lead- 
ing to an erroneous prediction of the optimum DOC. This 
figure also shows that changes in the active set will begin to 
induce error for an overly stable design. 

X Enol 
in DOC 

9.0 
5.0 
2.5 
0.4 
0.1 
0.05 
0.01 
0 

0 
0 
0.03 
0.50 
1 .a5 
5.75 

16.40 

- 

Figures 5-9 demonstrate that post-optimality informa- 
tion is useful in predicting the effect of various constraint 
perturbations on DOC*. To illustrate the validity of post- 
optimality information with respect to aparameter variation, 
the effects of perturbations in the cruise Mach number were 
investigated. Fig. 10 shows the variation in optimum DOC 

4.9 - - Exact colulbn --- Optimal sensilivlty prediction 
0 Optimum with present sel 

d parameters 

4.4 - 

.0 .7 .8 
Cruke Mach nunber 

Fig. 10 Comparison of optimal sensitivity prediction for 
cruise Mach number parameter variations. 

for different values of the cruise Mach number. Through a 
central-difference approximation, the slope of the re-optimi- 
zation curve in Fig. 10 is computed as -1.450 centsheat-mile 
at the present optimum; whereas, with use of eq. (l), the 
change in optimum DOC with respect to cruise Mach number 
is predicted tobe -1.448 cents/seat-mile. Hence, eq. (1). may 
be used to obtain accurate estimates of the effect of parameter 
variations on the optimum solution. Fig. 10 shows that for 
cruise Mach numbers from 0.7 to 0.85, the post-optimality 
prediction is quite accurate (to within 1% of the true value). 

Table 3 liits the error in the optimal sensitivity predic- 
tion relative to a re-optimized solution for various levels of 
cruise range constraint perturbations (Fig. 5). Notice that the 
error is quite small over a large range of perturbations. Also 
listed in this table is the number of function evaluations re- 
quired by the NPSOL re-optimization procedure beginning 
at the present optimum (Fig. 4). Note that in this re-optimi- 
zation process, no information from the original optimiza- 
tion procedure was retained. Table 3 highlights the payoff in 
using optimal sensitivity results to predict the effect of small 
changes in a parameter or constraint. Recall that this estimate 
is essentially free for constraint variations and costs only one 
or two extra function evaluations for every parameter of in- 
terest. Hence, use of optimal sensitivity information may be 
much more efficient than re-optimization. 

Table 3. Optimal sensitivity estimate versus NPSOL re- 
optimization for cruise range constraint variation. 

;onstrain 
Bound, 
nmi. 

500 
600 
700 
850 
900 
925 
950 
955 
960 
965 
970 

1000 
1100 
1250 
1500 
2000 - 

Constraint originally = 960 n.mi. 
DOC” = 4.4594 centdseat-mile 

Actual DOC: 
en Meat-m ilc 

5.3930 
5.0649 
4.8331 
4.5850 
4.5235 
4.4956 
4.4695 
4.4643 
4.4594 
4.4545 
4.4496 
4.4218 
4.3451 
4.2552 
4.1728 
4.1198 

I Function Evaluation! 
Required by 

Re-optimization1 

406 
469 
350 
456 
400 
138 
91 
91 

62 
62 
91 

155 
487 
416 
555 

- 

lOriginal optimization problem required 610 function evaluations. 
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The basic premise behind NPSOL (or any SQP algo- 
rithm) involves the use of major and minor iterations.4~~~ 
The major iterations determine the sequence of design points 
which eventually converge to the solution; hence, it is in 
each major iteration that the line-search is performed. Mi- 
nor iterations are used to solve the resulting quadratic pro- 
gramming problem at each design point. Since there are 14 
design variables in this problem (including the two compat- 
ibility variables), eveq minor problem iteration will require 
at least 14 function evaluations to numerically estimate the 
objedive gradient at the present point. Furthermore, because 
there may be several minor iterations in one major iteration 
o?afticularly, during the first major iteration where the algo- 
rithm is trying to identify an initial feasible point), even a 

in which only a single major iteration is need- WP- 
ed may require a large number of function evaluations. As 
the perturbation from the original problem increases, so will 
the number of function evaluations required in the re-opti- 
mization process. This increase in numerical requirements 
must be balanced against the failing accuracy of the optimal 
sensitivity prediction for large perturbations. 

. .  

As shown in Table 3, for even a small perturbation in 
the constraint value, NPSOL re-optimization requires a large 
number of function evaluations to reach the new optimum, 
This is because when the value of an active constraint is 
perturbed, either the present design point (the previous opti- 
mum) becomes infeasible or the perturbed constraint be- 
comes inactive. As mentioned previously, either of these two 
situations generally requires more than one minor iteration 
(thereby, increasing the number of objective gradient evalu- 
ations required for the new solution). In general, by begin- 
ning the reoptimization procedure with infomution built-up 
during the initial problem solution, the number of function 
evaluations may be reduced. However, in this case, solution 
of the perturbed problem may still require several minor it- 
erations to either locate a feasible point or identify the cor- 
rect active set of constraints. Therefore, starting the 
re-optimization procedure in this manner was not found to 
provide a dramatic decrease in the required number of func- 
tion evaluations. 

Use of Optimal Sensitivity Illrormation in Hierarchical 
Decomposition 

Numerous authors have proposed the use of some form 
of multi-level decomposition strateg to simplify the solu- 
tion of a complex design problem. l7-lo In such an approach, 
a single, large problem is decomposed into several smaller 
problems, each of which is optimized separately. Although 

the solution of the decomposed problem now requires an 
optimization routine for each smaller problem, the smaller 
problems are simpler to analyze and properly scale. When 
broken down into master and subproblems, the decomposi- 
tion is termed hierarchi~al. '~.~~ 

From the previous analysis, it is evident that if either a 
constraint or parameter is perturbed slightly. the sensitivity 
prediction will yield a good estimate even in a nonlinear 
region of the design space. Because the optimal sensitivity 
information is nearly exact in the limit of an infinitesimally 
small step away from the solution, a design problem which 
is hierarchically decomposed could utilize the post-optimality 
information of the subproblem to estimate the main prob- 
lem objective gradient. This is possible since the subprob- 
lem parameters are also the main problem design variables. 
Hence, the main problem objective gradient (dF/dx) is equiv- 
alent to the subproblem dF*/dp and can be estimated with 
eq. (1) rather than through finite differentiation of the re- 
optimized subproblem. 

This use of sensitivity information is demonstrated 
through the design of a fully-reusable, single-stage-to-orbit 
(SSTO) vehicle. Dry-weight is the minimization variable 
since for a manned launch vehicle, the dry-weight compo- 
nents comprise a major portion of the total development cost. 
This problem has been analyzed previously through use of a 
Taguchi approach in which a form of hierarchical decompo- 
sition was ~ s e d 6 . 2 ~ ~ ~ ~  Additionally, this problem has been 
treated with and without decomposition using calculus-based 
0ptimization2~ In this investigation, the problem is posed 
with 25 design variables, and five constraints. As listed in 
Table 4, there are three terminal constraints in addition to a 
maximum dynamic pressure and maximum normal force 
constraint. Design variables include the gross weight and 
thrust-to-weight ratio at liftoff, the initial launch direction, 
the reference aerodynamic surface area, six propulsion pa- 
rameters, and a set of 15 ascent pitch rates. 

To analyze this problem, the three degree-of-freedom 
equations of motion were numerically integrated with use 
of the Program to Optimize Simulated Traje~tories2~ As 
shown in Fig. 11, the required set of POST inputs include 
all 25 design variables. POST is used to evaluate the inflight 
and terminal constraints and to compute the vehicle mass- 
ratio (MR). For a given MR, the Configuration Sizing pro- 
gram developed at L a c  is used to size the vehicle and 
determine the dry-weight. As shown in Fig. 11, the six pro- 
pulsion parameters and the liftoff thrust-to-weight are the 
only design variables required by CONSIZ. 
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Table 4. Single-stage-to-orbit launch vehicle 
design problem. 

Objective function = dry wei&t 

Constraints 
~ ~ 

Name Required Value 
1. Terminal altitude, R...........................................,.,.3.~~~5 
2. Tenninal n i t  path angle, deg .................................. .O.o 
3. Terminal inclination, deg ...........................................eo.O 

4. Maximum dynamic pressure, I& ......................... .lOoo.O 

5. Meximum normal force. Ib ....................................... 3.6585 

Design Variables 

Name Min. InitialValue Max. 
Gmss liftoff weight, Ib ............ 1.- 2.086 2.- 1. 

2. 
3. 

4. 
5. 
6. 

7. 
8. 

9. 

10. 

sulting from the vehicle sizing process (Srefc) is the same 
as the reference aerodynamic surface area used to compute 
the aerodynamic forces and evaluate the flight path (Sref). 
Similar control must be placed on the gross liftoff weight. 
These requirements could either be enforced by iteration or 
through the addition of two extra constraints (compatibility 
constraints) as shown in Fig. 11. By using compatibility con- 
straints, the configuration-control requirements are placed 
on the optimizer and an iterative loop is removed. 

Removal of the POST-CONSIZ iteration loop reduces 
the required number of function evaluations. Additionally, 
integration of POST and CONSIZ in this manner has nu- 
merous design benefits. In regards to Optimization, integrat- 
ing these two codes allows dry-weight or other vehicle 
component weights to become available as optimization vari- 

S,f, wing, f? ........................ 1ooo.o 
Launch azimuth, deg ............. 160.0 
Thwstlweit at liftoff ............... 1.2 
Chamber pressure, psia ....... 3000.0 
Mode 1, mbhtre ratio .............. 10.0 
Mode 2, mixture ratio ............... 5.0 

Mode 1, area ratio ................... 20.0 

Mode 2, area ratio ................... 60.0 

1500.0 
180.0 

1.35 
3850.0 

12.0 
6.0 
40.0 
110.0 

2000.0 
200.0 

1.5 
4700.0 

14.0 

60.0 
160.0 

ables. Furthermore, through integration, the combined vehi- 
cle-trajectory model is guaranteed to be consistent. Note that 
prior to the integration of these two disciplinary algorithms, 
a designer was forced to iterate between these two codes 
acting as a human interface. 

7.0 
Before resorting to decomposition, the solution of this 

SSTO optimization problem was attempted with use of a 
In  

Mode llmode 2 transition single optimizer as shown in Fig. 12. Use of both NPSOLkL 
Mach number 1.5 3.0 4.5 and a projected-gradient approach were tried; however, a 

11-25. Set of 15 pitch fates, deglsec ..O.O converged solution was never achieved. Similar problems 
with a single optimizer were encountered in Ref. 23. It is 

........................... 
-l2Os0 

believed that most of this convergence difficulty may be at- 
tributed to scaling problems. With use of a hierarchical de- 
composition approach, as sketched in Fig. 13, convergence 
was shown to be much easier to achieve. This is most likely 
a result of two factors. First, when decomposed, the number 
of optimization degrees-of-freedom (defined as the number 
of design variables minus the number of active constraints 
at the solution) in each of the two optimization problems is 

other weiohts (L iwa 

Tank a d  pmpdlsnt demnies Atmocphuk rode( 

Fig. 11 Trajectoryheights and sizing integration process. 

As part of the sizing process, CONSIZ scales the vehi- 
cle and re-computes the gross liftoff weight (GLOW,) and 
reference aerodynamic surface area (Srefc). Therefore, con- 
figuration-conml is required between POST and CONSIZ 
to ensure that the reference aerodynamic surface area re- 

less than in the original problem. For this problem, when 
decomposed, the subproblem is characterized with 12 opti- 
mization DOF and the main problem with seven optimiza- 

%= populsbn r/aem characteristics (S), 
TMI I m ~ f l .  pHch rates (15). gross weigh! I ~ftoft, 
Sref. lnltlal launch directbn 

6 = mksbn requiremenis 
E =  ItMgM 6. terminal condrainis 

Fig. 12 SSTO launch vehicle design problem, single 
optimization. 
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MAIN PROBLEM 
I F = d r ~  w e w  (minimize) 1 

Current value A optimal 
ol main problem 
d.rign variables 

dF'@ 
zzr4 

d SUBPROBLEM - 
F I dry webht (mlnlmlze) 
x's pitch rater (15). grocc WMM 1 lmofl, 

6 I propukbn rystem chancterktlcs (6). 

f S InfilirrM 6 Iermlnal constraints 

Srd. lnithl hunch diredbn 

Tm I imon 

Fig. I3 SSTO launch vehicle design problem, hierarchical 
&composition optimization. 

tion DOE whereas the original problem has 19 optimiza- 
tion DOF. Less optimization DOF typically implies less dif- 
ficulty for the optimizer once a feasible point has been 
obtained. Secondly, by decomposing the problem such that 
the trajectory variables are in the subproblem and the pro- 
pulsion variables are in the main problem (Fig. 13), disci- 
plinary cross-coupling within each problem becomes less of 
an issue (Le., the terminal and inflight trajectory constraints 
are satisifed by variations in the trajectory design variables). 

As a result of the decomposed structure of this design 
problem, computation of the main-problem objective gradi- 
ent could require a subproblem optimization for each main- 
problem variable perturbation. This implies seven 
subproblem optimizations (each requiring numerous func- 
tion evaluations) would be needed for every main-problem 
minor iteration. However, as illustrated in Figure 13, some 
of this computational expense could be eliminated by pass- 
ing the optimal sensitivity information of the converged sub- 
problem to the main problem. This is possible since the 
parameters of the subproblem are the design variables of the 
main problem. In this case, only seven extra function evalu- 
ations are required to estimate the main-problem objective 
gradient through eq. (1). 

Convergence results and the optimum dry-weight for 
several optimization strategies are presented in Table 5 along 
with the prior solution of Refs. 21 and 22. As mentioned 
previously, with just a single optimizer, converged solutions 
were not achieved, therefore, for these cases, the final value 
of dry-weight is above that determined in the earlier studies. 
However, when decomposed as described in Fig. 13, only 
11 main-problem major iterations were required for NPSOL 

to converge to the optimum solution (beginning from the 
design point listed in Table 4). Without the use of the sub- 
problem optimal sensitivity information in the main-prob- 
lem, 477 function evaluations were required to reach this 
solution. 

When the main-problem objective gradient calculations 
were based on the subproblem optimal sensitivity calcula- 
tions, the number of function evaluation required to reach 
the optimum decreased to 349 (a decrease of 27%). An even 
greater decrease could have been achieved; however, during 
the first two main-problem major iterations, finite-differenc- 
ing was needed to compute the objective gradient. This was 
required because with the initial set of design variables, all 
of the inflight and terminal constraints could not be satisfied 
by the subproblem optimization. With an infeasible result in 
the subproblem, the computation of P / d p  from eq. (1) could 
not be performed. Once the subproblem constraints were 
satisfied, the optimal sensitivity information could be com- 
puted and passed from the subproblem to the main problem, 
thereby avoiding the need for numerous subproblem optimi- 
zations to compute the main-problem objective gradient. 

The values of the optimum design variables and objec- 
tive function obtained through solution of the hierarchically 
decomposed problem which utilized the post-optimality in- 
formation are shown in Fig. 14 along with a vehicle sketch. 

Table 5. Single-stage-to-orbit launch vehicle 
optimization results. 

Optimization 
Approach 

Taguchi Method*lq 
Single Optimization 
Problem Projected 
Gradient Method 
Single Optimization 
Problem NPSOL 
Hierarchical 
Decomposition 
with Finite 
Differencing in Main 
Problem NPSOL 
Hierarchical 
Decomposition 
with Post-Optimality 
Information 
in Main Problem 

Trajectory/ 
Weights 
& Sizing 
Analyses 

Separate 

Integrated 

Integrated 

Integrated 

Integrated 

Required 
# of 

Function 
Evaluations 

- 

>loo0 

*loo0 

477 

349 

Final 
Objective 
Function 
Value, Ib 

109.400 

1 16,000 

1 12,000 

109,080 

109.080 
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Gross liftoff weight, Ib . . . . . .  1.23- 

Launch azimuth, deg . . . . . .  .182.1 
Thrustkeight at liftoff .......... 1.2 
Chamber pressure, psia ...... 4700 
Mode 1, mixture ratio . . . . . . . . .  10.0 
Mode 2, mixture ratio . . . . . . . . .  .7.0 
Mode 1. area ratio.. ........ .49.38 
Mode2,arearatio.. ........ .160.0 
Modo llmode 2 trandtion 
Mach number ............... .1.5 
Set of 15 pitch rates 

Dryweight, Ib ........... 109080 

S,f, fP ................... . 1 s 2  

Fig. 14 Optimal solution of single-stage-to-orbit hunch 
vehicle design problem. 

The optimum design variables found matched that of Refs. 
21 and 22 quite well. However, because the trajectory and 
weights and sizing disciplines were integrated, a consistent 
vehicle-trajectory model results. This consistency resulted 
in a slightly lower final dry-weight (see Table 5). 

Conclusions 

The objective of the present research was to investigate 
the applicability of optimal sensitivity information to aero- 
space vehicle design. An optimal sensitivity (or post-opti- 
mality) analysis refers to computations performed once the 
initial optimization problem is solved. These computations 
may beusedtocharacterizethedesign space about thepresent 
solution and infer changes in the present solution as a result 
of a constraint or parameter variation without re-optimizing 
the entire system. This analysis has demonstrated that the 
post-optimality information generated through fust-order 
computations can be used to accurately predict the effect of 
constraint and parameter perturbations on the optimal solu- 
tion. This fust-order analysis is essentially free for constraint 
variations and requires a single extra function evaluation for 
perturbations in a previously fixed parameter. 

For the aircraft design problem investigated, the opti- 
mal sensitivity predictions matched the true variation in op- 
timum DOC over the practical range of cruise range, takeoff 
field length, second-segment climb gradient, drag-to-thrust 
ratio during cruise, and static margin constraint values to 
within a few percent. Furthermore, the variation in DOC* 
with respect to the parameter, cruise Mach number, was also 
estimatedaccmtely(to within l%overtherange0.7 to0.85). 
Hence, an appropriate use of optimal sensitivity information 

is to demonstrate the numerous design possibilities avail- 
able through a change in the constraints or parameters with- 
out the need for re-optimization. For even small constraint 
variations, re-optimization was shown to require a large num- 
ber of function evaluations because (1) either the previous 
optimum becomes infeasible or (2) the perturbed constraint 
becomes inactive. Hence, use of optimal sensitivity infor- 
mation was shown to be much more efficient tban re-optimi- 
zation. However, for large perturbations in a constraint or 
parameter, active set changes and infeasible regions of the 
design space cause the optimal sensitivity predictions to 
become inaccurate and re-optimization is required. 

Because the optimal sensitivity information is nearly 
exact in the limit of an infinitesimally small step away from 
the solution for parameter variations, a design problem which 
is hierarchically decomposed could utilize the post-optimality 
information of the subproblem to estimate the main-prob- 
lem objective gradient. This is possible since the subprob- 
lem parameters are also tbe main-problem design variables. 
Estimation of the main-problem objective gradient in this 
manner, rather than through finite differentiation of the re- 
optimized subproblem, results in a significant decrease in 
the number of objective functions required to reach the opti- 
mal solution. This use of optimal sensitivity information 
provided a 27% decrease in the number of required function 
evaluations for solution of a reusable, single-stage-to-orbit, 
launch vehicle design problem. 

To solve this launch vehicle design problem, integra- 
tion of a trajectory program and weights and sizing algo- 
rithm was performed. This integration relied on compatibility 
constraints to enforce configuration-control and eliminate 
an otherwise costly ileration loop. Through integration of 
these two disciplinary codes, dry-weight or any other vehi- 
cle component weight combination becomes available as a 
potential optimization variable and a consistent vehicle-tra- 
jectory model is ensured. Additionally, this consistency re- 
sulted in a slightly lower final objective function value. 
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